US009853227B2 # (12) United States Patent Ma et al. #### (54) ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES (71) Applicant: Universal Display Corporation, Ewing, NJ (US) (72) Inventors: Bin Ma, Plainsboro, NJ (US); Alan **DeAngelis**, Pennington, NJ (US); **Chuanjun Xia**, Lawrenceville, NJ (US); **Vadim Adamovich**, Yardley, PA (US) (73) Assignee: Universal Display Corporation, Ewing, NJ (US) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 682 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 13/872,840 (22) Filed: Apr. 29, 2013 (65) **Prior Publication Data** US 2014/0103305 A1 Apr. 17, 2014 #### Related U.S. Application Data (63) Continuation of application No. 13/006,016, filed on Jan. 13, 2011, now Pat. No. 9,130,177, and a (Continued) (51) Int. Cl. *H01L 51/54* C09K 11/06 (2006.01)(2006.01) (Continued) (10) Patent No.: US 9,853,227 B2 (45) **Date of Patent:** \*Dec. 26, 2017 (52) U.S. Cl. CPC ..... **H01L 51/0085** (2013.01); **C07F 15/0033** (2013.01); **C09K 11/06** (2013.01); (Continued) (58) Field of Classification Search None See application file for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 4,769,292 A 9/1988 Tang et al. 5,061,569 A 10/1991 VanSlyke et al. (Continued) FOREIGN PATENT DOCUMENTS CN 1589307 A 3/2005 DE 102005057963 6/2007 (Continued) OTHER PUBLICATIONS Foreign Office Action dated Mar. 4, 2014 for corresponding Chinese Application No. 201210371182.4. (Continued) Primary Examiner — Marie R. Yamnitzky (74) Attorney, Agent, or Firm — Duane Morris LLP (57) ABSTRACT Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a bulky alkyl at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties. 17 Claims, 3 Drawing Sheets $$\begin{bmatrix} R_4 \\ N \end{bmatrix} \text{ or } \begin{bmatrix} R_3 \\ O \end{bmatrix} \\ R_1 \end{bmatrix} \text{ 3-m}$$ | | Related | HIIS A | pplication Data | | 8.431 | ,243 B2 | 4/2013 | Kwong et al. | | |------|------------------------------|---------------|-----------------------------------------------------|-------|------------------------------------------------|-----------------|--------------------|-------------------------------------|--------------| | | | | | 224 | 9,130 | ),177 B2* | 9/2015 | Ma et al | C07F 15/0033 | | | | | f application No. 12/044<br>now Pat. No. 8,431,243. | | 2002/003-<br>2002/013- | | 3/2002<br>9/2002 | Thompson et al.<br>Igarashi | | | (60) | | | | | 2002/015 | | 10/2002 | Son et al. | C07E 15/004 | | (60) | Provisional ap 8, 2007. | plication | No. 60/905,758, filed on | Mar. | 2003/003 | 9646 A1* | 3/2003 | Kamatani et al | 428/690 | | | 0, 2007. | | | | 2003/013<br>2003/015 | | | Li et al.<br>Tsuboyama et al. | | | (51) | Int. Cl. | | (**** | | 2003/015 | | | Marks et al. | | | | H01L 51/00<br>C07F 15/00 | | (2006.01)<br>(2006.01) | | 2003/017<br>2003/023 | | | Thompson et al. Forrest et al. | | | | H01L 51/50 | | (2006.01) | | 2004/003 | 6077 A1 | 2/2004 | Ise | | | (52) | U.S. Cl. | | , | | 2004/013 <sup>1</sup><br>2004/013 <sup>1</sup> | | | Igarashi et al.<br>Igarashi et al. | | | | | | K 2211/1029 (2013.01); ( | | 2004/017 | 4116 A1 | 9/2004 | Lu et al. | | | | 2211/18 | 3 (2013 | .01); <i>H01L 51/5016</i> (201 | 3.01) | 2005/002<br>2005/011 | | | Thompson et al.<br>Ogasawara et al. | | | (56) | ] | Referen | ces Cited | | 2005/023 | 8919 A1 | 10/2005 | Ogasawara | | | | II S D | ATENT | DOCUMENTS | | 2005/024<br>2005/026 | | | Satoh et al.<br>Thompson et al. | | | | 0.5.1 | AILIVI | DOCOMENTS | | 2005/026/<br>2006/000 | | | Walters et al.<br>Lin et al. | | | | 5,247,190 A<br>5,554,220 A | | Friend et al.<br>Forrest et al. | | 2006/000 | 8671 A1 | | Kwong et al. | | | | | | Forrest et al. | | 2006/012<br>2006/013 | | | Stossel et al.<br>Huo et al. | | | | 5,707,745 A<br>5,834,893 A | | Forrest et al.<br>Bulovic et al. | | 2006/020 | 2194 A1 | 9/2006 | Jeong et al. | | | | | 12/1998 | Gu et al. | | 2006/020-<br>2006/024 | | | Kim et al.<br>Adamovich et al. | | | | 5,929,194 A<br>5,986,401 A | | Woo et al.<br>Thompson et al. | | 2006/025 | 1923 A1 | 11/2006 | Lin et al. | | | | 6,013,982 A | 1/2000 | Thompson et al. | | 2006/026<br>2006/028 | | 11/2006<br>12/2006 | lse<br>Kwong et al. | | | | 6,087,196 A<br>6,091,195 A | | Sturm et al.<br>Forrest et al. | | 2007/000 | 4918 A1 | 1/2007 | Jeong et al. | | | | 6,097,147 A | 8/2000 | Baldo et al. | | 2007/010-<br>2007/019 | | | Kim et al.<br>Knowles et al. | | | | 6,166,489 A<br>6,294,398 B1 | | Thompson et al.<br>Kim et al. | | 2007/022-<br>2007/027 | | | Kim et al.<br>Herron et al. | | | | 6,303,238 B1<br>6,337,102 B1 | | Thompson et al. Forrest et al. | | 2007/027 | 8938 A1 | 12/2007 | Yabunouchi et al. | | | | | 10/2002 | Kim et al. | | 2008/001<br>2008/001 | | | Schafer et al.<br>Egen et al. | | | | 6,528,187 B1<br>6,687,266 B1 | 3/2003 2/2004 | Okada<br>Ma et al. | | 2008/010 | 6190 A1 | 5/2008 | Yabunouchi et al. | | | | 6,821,645 B2 | 11/2004 | Igarashi et al. | | 2008/012-<br>2008/022- | | | Mizuki et al.<br>Xia et al. | | | | 6,835,469 B2<br>6,911,271 B1 | | Kwong et al.<br>Lamansky et al. | | 2008/026 | 1076 A1 | | Kwong et al. | | | | 6,913,710 B2 | 7/2005 | Farrand et al. | | 2008/029<br>2009/000 | | | Knowles et al.<br>Kawamura et al. | | | | 6,921,915 B2<br>6,939,624 B2 | 9/2005 | Takiguchi et al.<br>Lamansky et al. | | 2009/0009<br>2009/001 | | | Nishimura et al.<br>Iwakuma et al. | | | | 6,939,625 B2<br>7,001,536 B2 | | Marks et al.<br>Thompson et al. | | 2009/001 | | 1/2009 | Iwakuma et al. | | | | 7,071,615 B2 | 7/2006 | Lu et al. | | 2009/003<br>2009/004 | | | Yamada et al.<br>Nishimura et al. | | | | 7,084,273 B2<br>7,087,321 B2 | | Stossel et al.<br>Kwong et al. | | 2009/004 | 5731 A1 | 2/2009 | Nishimura et al. | | | | 7,090,928 B2 | 8/2006 | Thompson et al. | | 2009/008<br>2009/010 | | | Park et al.<br>Prakash et al. | | | | 7,094,897 B2<br>7,147,935 B2 | | Stossel et al.<br>Kamatani et al. | | | 4472 A1* | | Je et al | | | | 7,154,114 B2 | | Brooks et al. | | 2009/010 | 8737 A1 | 4/2009 | Kwong et al. | 428/690 | | | 7,198,859 B2<br>7,250,226 B2 | 7/2007 | Kwong et al.<br>Tokito et al. | | 2009/011<br>2009/015 | 5316 A1 | 5/2009 | Zheng et al.<br>Eum et al. | | | | 7,261,954 B2<br>7,279,704 B2 | | Thompson et al. Walters et al. | | 2009/016 | 5846 A1 | 7/2009 | Johannes et al. | | | | 7,329,896 B2 | 2/2008 | Tierney et al. | | 2009/016<br>2009/017 | | | Lin et al.<br>Kuma et al. | | | | 7,332,232 B2<br>7,338,722 B2 | | Ma et al.<br>Thompson et al. | | 2010/009 | | | Alleyne et al. | | | | 7,378,162 B2 | 5/2008 | Jeong et al. | | | EODEIG | ZNI DATE | NT DOCUMENT | c | | | 7,393,599 B2<br>7,396,598 B2 | | Thompson et al. Takeuchi et al. | | | FOREIG | JIN FALE | NI DOCUMENT | S | | | 7,429,426 B2<br>7,431,968 B1 | | Brown et al.<br>Shtein et al. | | EP<br>EP | | 0955<br>9526 | 5/1995<br>9/2002 | | | | 7,445,855 B2 | 11/2008 | Mackenzie et al. | | EP | 134 | 18711 | 10/2003 | | | | 7,470,928 B2<br>7,534,505 B2 | | Jeong et al.<br>Lin et al. | | EP<br>EP | | 5079<br>3132 | 11/2006<br>5/2007 | | | | 7,534,853 B2 | 5/2009 | Stossel et al. | | EP | 203 | 4538 | 3/2009 | | | | 7,560,176 B2<br>7,629,061 B2 | | Cheng et al.<br>Gupta et al. | | EP<br>EP | | 5710<br>30795 | 5/2009<br>7/2009 | | | | 7,740,957 B2 | 6/2010 | Kim et al. | | EP | 208 | 5450 | 8/2009 | | | | 7,799,917 B2<br>7,851,072 B2 | | Samuel et al.<br>Kwong et al. | | JP<br>JP | 09-27<br>200307 | | 10/1997<br>3/2003 | | | | 7,883,785 B2 | 2/2011 | Stossel et al. | | JP | 20051 | 1610 | 1/2005 | | | | 8,017,774 B2 | 9/2011 | Kamatani et al. | | JP | 200712 | .3392 | 5/2007 | | #### (56)**References Cited** FOREIGN PATENT DOCUMENTS JP 2007254297 10/2007 JP 2008074939 4/2008 KR 100662379 B1 1/2007 KR 10-2007-0079009 8/2007 WO 9921935 5/1999 WO 0057676 9/2000 WO 0070655 11/2000 WO 0139234 5/2001 WO 6/2001 0141512 WO 0159030 8/2001 0202714 WO 1/2002 WO 0215645 2/2002 WO 02066552 8/2002 WO 03033617 4/2003 WO 03040256 5/2003 WO 03040257 5/2003 WO 03060956 7/2003 WO 2004026886 4/2004 WO 2004041962 5/2004 WO 2004093207 10/2004 WO 2004107822 12/2004 WO 2005014551 2/2005 WO 2005019373 3/2005 WO 2005021678 3/2005 WO 2005027583 3/2005 WO 2005030900 4/2005 WO 2005089025 9/2005 wo 2005123873 12/2005 WO 2005124889 12/2005 WO 2006000544 1/2006 WO 2006001150 1/2006 WO 2006009024 1/2006 WO 2/2006 2006014599 WO 2006035997 4/2006 WO 2006056418 6/2006 WO 2006072002 7/2006 WO 8/2006 2006082742 WO 2006098120 9/2006 WO 2006100298 9/2006 WO 2006103874 10/2006 WO 2006114966 11/2006 WO 12/2006 2006132173 WO 2007002683 1/2007 WO 1/2007 2007004113 WO 2007004380 1/2007 WO 6/2007 2007063754 WO 2007063796 6/2007 WO 2008056746 5/2008 WO 2008101842 8/2008 WO 2008109824 9/2008 WO 11/2008 2008132085 WO 2009000673 12/2008 WO 2009003898 1/2009 WO 2009008311 1/2009 WO 2009018009 2/2009 WO 2/2009 2009021126 WO 2009050290 4/2009 WO 2009062578 5/2009 WO 2009063833 5/2009 WO 2009066778 5/2009 ## OTHER PUBLICATIONS 5/2009 7/2009 8/2009 11/2012 2009066779 2009086028 2009100991 2012148511 WO WO WO WO Notice of Reasons for Rejection issued Aug. 14, 2014 for corresponding Japanese Application No. 2013-179125. State Intellectual Property Office of the People's Republic of China, Notification and English Version of Chinese Office Action regarding corresponding Chinese Application No. 201210371182.4 issued Jan. 9, 2015, pp. 1-9. State Intellectual Property Office of the People's Republic of China, Chinese Search Report and English Abstract regarding corresponding Chinese Application No. 201210371182.4 issued Jan. 9, 2015, pp. 1-4. Adachi, Chihaya et al., "Organic Electroluminescent Device Having a Hole Conductor as an Emitting Layer," Appl. Phys. Lett., 55(15): 1489-1491 (1989). Adachi, Chihaya et al., "Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device," J. Appl. Phys., 90(10): 5048-5051 (2001). Adachi, Chihaya et al., "High-Efficiency Red Electrophosphorescence Devices," Appl. Phys. Lett., 78(11)1622-1624 (2001). Aonuma, Masaki et al., "Material Design of Hole Transport Materials Capable of Thick-Film Formation in Organic Light Emitting Diodes," Appl. Phys. Lett., 90:183503-1-183503-3, (2007). Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, (1998). Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 1, 4-6 (1999). Gao, Zhiqiang et al., "Bright-Blue Electroluminescence From a Silyl-Substituted ter-(phenylene-vinylene) derivative," Appl. Phys. Lett., 74(6): 865-867 (1999). Guo, Tzung-Fang et al., "Highly Efficient Electrophosphorescent Polymer Light-Emitting Devices," Organic Electronics, 115-20 (2000). Hamada, Yuji et al., "High Luminance in Organic Electroluminescent Devices with Bis(10-hydroxybenzo[h]quinolinato) beryllium as an Emitter," Chem. Lett., 905-906 (1993). Holmes, R.J. et al., "Blue Organic Electrophosphorescence Using Exothermic Host-Guest Energy Transfer," Appl. Phys. Lett., 82(15):2422-2424 (2003). Hu, Nan-Xing et al., "Novel High Tg Hole-Transport Molecules Based on Indolo[3,2-b]carbazoles for Organic Light-Emitting Devices," Synthetic Metals, 111-112:421-424 (2000). Huang, Jinsong et al., "Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivates," Adv. Mater., 19:739-743 (2007). Huang, Wei-Sheng et al., "Highly Phosphorescent Bis-Cyclometalated Iridium Complexes Containing Benzoimidazole-Based Ligands," Chem. Mater., 16(12):2480-2488 (2004). Hung, L.S. et al., "Anode Modification in Organic Light-Emitting Diodes by Low-Frequency Plasma Polymerization of CHF3," Appl. Phys. Lett., 78(5):673-675 (2001). Ikal, Masamichi et al., "Highly Efficient Phosphorescence From Organic Light-Emitting Devices with an Exciton-Block Layer," Appl. Phys. Lett., 79(2):156-158 (2001). Ikeda, Hisao et al., "P-185 Low-Drive-Voltage OLEDs with a Buffer Layer Having Molybdenum Oxide," SID Symposium Digest, 37:923-926 (2006). Inada, Hiroshi and Shirota, Yasuhiko, "1,3,5-Tris[4-(diphenylamino)phenyl]benzene and its Methylsubstituted Derivatives as a Novel Class of Amorphous Molecular Materials," J. Mater. Chem., 3(3):319-320 (1993). Kanno, Hiroshi et al., "Highly Efficient and Stable Red Phosphorescent Organic Light-Emitting Device Using bis[2-(2-benzothiazoyl)phenolato]zinc(II) as host material," Appl. Phys. Lett., 90:123509-1-123509-3 (2007). Kido, Junji et al., "1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices," Jpn. J. Appl. Phys., 32:L917-L920 (1993). Kuwabara, Yoshiyuki et al., "Thermally Stable Multilayered Organic Electroluminescent Devices Using Novel Starburst Molecules, 4,4',4"-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4',4"-Tris(3-methylphenylphenyl-amino) triphenylamine (m-MTDATA), as Hole-Transport Materials," Adv. Mater., 6(9):677-679 (1994). Kwong, Raymond C. et al., "High Operational Stability of Electrophosphorescent Devices," Appl. Phys. Lett., 81(1) 162-164 (2002). #### (56) References Cited #### OTHER PUBLICATIONS Lamansky, Sergey et al., "Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes," Inorg. Chem., 40(7):1704-1711 (2001). Lee, Chang-Lyoul et al., "Polymer Phosphorescent Light-Emitting Devices Doped with Tris(2-phenylpyridine) Iridium as a Triplet Emitter," Appl. Phys. Lett., 77(15):2280-2282 (2000). Lo, Shih-Chun et al., "Blue Phosphorescence from Iridium(III) Complexes at Room Temperature," Chem. Mater., 18(21)5119-5129 (2006). Ma, Yuguang et al., "Triplet Luminescent Dinuclear-Gold(I) Complex-Based Light-Emitting Diodes with Low Turn-On voltage," Appl. Phys. Lett., 74(10):1361-1363 (1999). Mi, Bao-Xiu et al., "Thermally Stable Hole-Transporting Material for Organic Light-Emitting Diode an Isoindole Derivative," Chem. Mater., 15(16):3148-3151 (2003). Nishida, Jun-ichi et al., "Preparation, Characterization, and Electroluminescence Characteristics of $\alpha$ -Diimine-type Platinum(II) Complexes with Perfluorinated Phenyl Groups as Ligands," Chem. Lett., 34(4): 592-593 (2005). Niu, Yu-Hua et al., "Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex," Chem. Mater., 17(13):3532-3536 (2005). Noda, Tetsuya and Shirota, Yasuhiko, "5,5'-Bis(dimesitylboryl)-2,2'-bithiophene and 5,5"-Bis(dimesitylboryl)-2,2'5',2"-terthiophene as a Novel Family of Electron-Transporting Amorphous Molecular Materials," J. Am. Chem. Soc., 120 (37):9714-9715 (1998). Okumoto, Kenji et al., "Green Fluorescent Organic Light-Emitting Device with External Quantum Efficiency of Nearly 10%," Appl. Phys. Lett., 89:063504-1-063504-3 (2006). Palilis, Leonidas C., "High Efficiency Molecular Organic Light-Emitting Diodes Based on Silole Derivatives and Their Exciplexes," Organic Electronics, 4:113-121 (2003). Paulose, Betty Marie Jennifer S. et al., "First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes," Adv. Mater., 16(22):2003-2007 (2004). Ranjan, Sudhir et al., "Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes," Inorg. Chem., 42(4):1248-1255 (2003). Sakamoto, Youichi et al., "Synthesis, Characterization, and Electron-Transport Property of Perfluorinated Phenylene Dendrimers," J. Am. Chem. Soc., 122(8):1832-1833 (2000). Salbeck, J. et al., "Low Molecular Organic Glasses for Blue Electroluminescence," Synthetic Metals, 91:209-215 (1997). Shirota, Yasuhiko et al., "Starburst Molecules Based on pi-Electron Systems as Materials for Organic Electroluminescent Devices," Journal of Luminescence, 72-74:985-991 (1997). Sotoyama, Wataru et al., "Efficient Organic Light-Emitting Diodes with Phosphorescent Platinum Complexes Containing N^C^N-Coordinating Tridentate Ligand," Appl. Phys. Lett., 86:153505-1-153505-3 (2005). Sun, Yiru and Forrest, Stephen R., "High-Efficiency White Organic Light Emitting Devices with Three Separate Phosphorescent Emission Layers," Appl. Phys. Lett., 91:263503-1-263503-3 (2007). T. Östergård et al., "Langmuir-Blodgett Light-Emitting Diodes of Poly(3-Hexylthiophene) Electro-Optical Characteristics Related to Structure," Synthetic Metals, 88:171-177 (1997). Takizawa, Shin-ya et al., "Phosphorescent Iridium Complexes Based on 2-Phenylimidazo[1,2-α]pyridine Ligands Tuning of Emission Color toward the Blue Region and Application to Polymer Light-Emitting Devices," Inorg. Chem., 46(10):4308-4319 (2007). Tang, C.W. and VanSlyke, S.A., "Organic Electroluminescent Diodes," Appl. Phys. Lett., 51(12):913-915 (1987). Tung, Yung-Liang et al., "Organic Light-Emitting Diodes Based on Charge-Neutral Ru II PHosphorescent Emitters," Adv. Mater., 17(8)1059-1064 (2005). Van Slyke, S. A. et al., "Organic Electroluminescent Devices with Improved Stability," Appl. Phys. Lett., 69 (15):2160-2162 (1996). Wang, Y. et al., "Highly Efficient Electroluminescent Materials Based on Fluorinated Organometallic Iridium Compounds," Appl. Phys. Lett., 79(4):449-451 (2001). Wong, Keith Man-Chung et al., "A Novel Class of Phosphorescent Gold(III) Alkynyl-Based Organic Light-Emitting Devices with Tunable Colour," Chem. Commun., 2906-2908 (2005). Wong, Wai-Yeung, "Multifunctional Iridium Complexes Based on Carbazole Modules as Highly Efficient Electrophosphors," Angew. Chem. Int. Ed., 45:7800-7803 (2006). Burroughes et al., Nature, 1990, 347, 539. Baldo, et al., Phys. Rev. B, 1999, 60, 14422. Adachi et al., Appl. Phys. Lett. 2000, 77, 904. Lamansky et al., J. Am. Chem. Soc., 2001, 123, 4304. Cotton and Wilkinson, Advanced Inorganic Chemistry, 4th Editiion, John Wiley & Sons, New York 1980, p. 74. Shoustikov et al., IEEE Journal of selected topics in quantum electronics, 1998, 4, 3. Dartnall et al., Proceedings of the Royal Society of London B, 1983, 220, 115. Gupta et al., Journal of Photochemistry, 1985, 30, 173. Colorimetry, Second edition, Publication CIE 15.2-1986 (ISBN 3-900-734-00-3), pp. 19-21. Miyaura et al., Chem. Rev. 1995, 2457. Haworth, R. D. et al., J. Chem. Soc., 1948, 777. Lepeltier et al., "Tris-Cyclometalated iridium (III) styryl complexes and their saturated analogues; direct functionalization of IR(4-ME-ppy)3 and hydrogen transfer process," Organometallics, 2005, 24(24) p. 6069-6072. Jung et al., "Effect of substitution of methyl groups on the luminescence performance of Ir complexes: preparation, structures, electrochemistry, photophysical properties and their applications in organic light-emitting diodes (OLEDs)," European Journal of Inorganic Chem., 2004, 17:3415-3423. Yang, et al., "High efficiency mer-iridium complexes for organic light-emitting diodes," Chem. Comm., 2004-19:2232-2233. Lo et al., "Green phosphorescent dendrimer for light-emitting diodes," Adv. Materials 2002, 14: 975-979. Kawa et al., "Enhanced luminescence of lanthanide within lanthanide-cored dendrimer complexes", Thin Solid Films 331, (1998) p. 259-263. Lupton et al., "Control of electrophosphorescence in conjugated dendrimer light-emitting diodes", Advanced Functional Materials 2001, 11, No. 4, p. 287-294. U.S. Appl. No. 60/811,533, filed Jun. 6, 2006, Ma Bin et al. Wang et al., "Polymer Based Tris(2-Phenylpyridine)Iridium Complexes", Macromolecules: 39(9): 3140-3146, 2006. Takayama et al., "Soluble Polymer Complexes Having A1Q3-Type Pendent Groups", Macromolecular Rapid Communications, 25:1171-1174, 2004. Lafolet et al., "Iridium complexes containing p-phenylene units. The influence of the conjugation on the excited state properties". J. of Materials Chemistry. 15(12):2820-2828, 2005. Bacher et al., "Photo-Cross-Linked Triphenylenes as Novel Insoluble Hole Transport Materials in Organic LEDs", Macromolecules 32:4551-4557, 1999. Bacher et al., "Synthesis and Characterization of Photo-Cross-Linkable Hole-Conducting Polymers". Macromolecules 38: 1640-1647, 2005. Bellman et al., "New Triarylamine-Containing Polymers as Hole Transport Materials in Organic Light Emitting Diodes: Effect of Polymer Structure and Cross-Linking on Device Characteristics", Chem. Mater. 10:1668-1676, 1998. Ding et al., "Highly Efficient Green-Emitting Phosphorescent Iridium Dendrimers Based on Carbazole Dendrons", Adv. Funct. Mater. 16:575-58, 2006. Domercq et al., "Organic Light-Emitting Diodes with Multiple Photocrosslinkable Hole-Transport Layers", J. of Polymer Part B: Polymer Physics. 41:2726-2732, 2003. Domercq et al., "Photo-Patternable Hole Transport Polymers for Organic Light Emitting Diodes". Chem. Mater. 15:1491-1496, 2003 #### (56) References Cited #### OTHER PUBLICATIONS Evans et al., "Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes". J. Am. Chem, Soc. 128:6647-6656, 2006. Jiang et al., "High Efficiency Electrophosphorescent Fluorene-alt-carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes", Macromolecules 38:4072-4080, 2005. Jiang el al., "Perfluorocyclobutane-based arylamine Hole-Transporting Materials for Organic and Polymer Light Emitting Diodes", Adv. Funct. Mater. 12(11-12): 745-751, (2002). Li et al., "Multifunctional platnium porphyrin dendrimers as emitters in undoped phosphorescent based light emitting devices", Appl. Phys. Lett. 89:061125-1-061125-3,2006. Liu et al., "Red Phosphorescent Iridium Complex Containing Carbazole-Functionalized beta-Diketonate for Highly Efficient Nondoped Organic Light-Emitting Diodes", Adv. Funct. Mater, 16:1441-1448, 2006. Nuyken et al., "Crosslinkable hole- and electron-transport materials for application in organic light emitting diodes (OLEDs)", Designed Monomers and Polymers 5(2): 195-210, 2002. Sandee et al., "Solution Processible Conjugated Electrophosphorescent Polymers", J. Am. Chem. Soc. 126:7041-7048, 2004. Schultz et al., "Enhancement of Phosphorescence of Ir Complexes Bound to Conjugated Polymers: Increasing the Triplet Level of the Main Chain", Macromolecules 39:9157-9165, 2006. Wong et al., "A multifunctional platinum based triplet emitter for OLED applications", Organometallics 24:4079-4082, 2005. You et al, "Blue electrophosphorescence from Iridium Complex Covalently Bonded to the Poly (9-dodecyl-3-vinylcarbazole): Suppressed Phase Segregation and Enhanced Energy Transfer", Macromolecules 39:349-356, 2006. Zhang et al., "Highly Efficient polymer light-emitting diodes using color-tunable carbazole based iridium complexes", Chem. Phys. Lett 422:386-390, 2006. Decision of Rejection issued on Mar. 28, 2016 for corresponding JP Patent Application No. 2013-549526. International Search Report in related PCT/US2012/020991 application. (dated Mar. 14, 2012). \* cited by examiner FIGURE 1 FIGURE 2 Dec. 26, 2017 $$\begin{bmatrix} R_4 \\ N \\ N \end{bmatrix} \text{Ir} \begin{bmatrix} O = \\ R_3 \\ O = \\ R_1 \end{bmatrix} \text{3-m}$$ FIGURE 3 #### ORGANIC ELECTROLUMINESCENT MATERIALS AND DEVICES # CROSS REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. application Ser. No. 13/006,016, filed Jan. 13, 2011, now U.S. Pat. No. 9,130,177. This application is also a continuation-in-part of U.S. application Ser. No. 12/044,234, filed Mar. 7, 2008, now U.S. Pat. No. 8,431,243, which claims the benefit of U.S. Provisional Application No. 60/905,758, filed Mar. 8, 2007. Each of the aforementioned related patent applications is expressly incorporated herein by reference in its entirety. # PARTIES TO A JOINT RESEARCH AGREEMENT The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a <sup>20</sup> joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed <sup>25</sup> invention was made as a result of activities undertaken within the scope of the agreement. #### FIELD OF THE INVENTION The present invention relates to organic light emitting devices (OLEDs). More specifically, the present invention is related to phosphorescent materials comprising a ligand having a 5-substituted 2-phenylquinoline. These materials may be used in OLEDs to provide devices having improved 35 performance. of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules. As used herein, "top" means furthest away from the #### **BACKGROUND** Opto-electronic devices that make use of organic mate- 40 rials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic 45 materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and 50 organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants. OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations 60 are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety. One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call 65 for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for 2 saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art. One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)<sub>3</sub>, which has the structure: In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line. As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a 'small molecule," and it is believed that all dendrimers As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between. As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form. A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand. As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conven- Formula I 30 Formula II 3 tional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy 5 As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions. More details on OLEDs, and the definitions described 20 above, can be found in U.S. Pat. No. 7,279,704, which is incorporated herein by reference in its entirety. #### SUMMARY OF THE INVENTION Compounds comprising a 5-substituted 2-phenylquinoline containing ligand are provided. The compounds comprise a ligand L having the formula: A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is phenyl. $\rm R_{\it A}$ may represent mono, di, tri, or tetra substitutions. Each of $\rm R_{\it A}$ is independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. $\rm R_{\it B}$ is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. The ligand L is coordinated to a metal M having an atomic number greater than 40. In one aspect, the compound has the formula: $$R_B$$ $N$ $Ir \leftarrow L']_{3-m}$ L' is an ancillary ligand. m is 1, 2, or 3. 4 In another aspect, L' is a monoanionic bidentate ligand. In yet another aspect, L' is $$O \longrightarrow R_3$$ $R_2$ R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub> are independently selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. In one aspect, the compound has the formula: Formula III $$\begin{bmatrix} R_4 & & & \\ & & & \\ & & & \\ R_5 & & & \\ & & & \\ R_6 & & & \\ \end{bmatrix}_{m}$$ $R_1, R_2, R_3, R_5, R_6$ and $R_7$ are independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. $R_4$ is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. m is 1, 2, or 3. Preferably, each of $R_1$ and $R_3$ are a branched alkyl with branching at a position further than the $\alpha$ position to the carbonyl group. In one aspect, each of $R_5$ , $R_6$ and $R_7$ are independently selected from methyl and hydrogen, and at least one of $R_5$ , $R_6$ and $R_7$ is methyl. In another aspect, each of $R_5$ and $R_7$ are methyl, and $R_6$ is hydrogen. In yet another aspect, each of $R_5$ and $R_6$ are methyl, and $R_7$ is hydrogen. In a further aspect, each of $R_5$ , $R_6$ and $R_7$ are methyl. In one aspect, $R_4$ is an alkyl group having at least 4 carbon atoms. In another aspect, $R_4$ is an alkyl group having at least 3 carbon atoms. Specific, non-limiting examples of the 5-substituted 2-phenylquinoline containing compounds are provided. In one aspect, the compound is selected from the group consisting of Compound 1-Compound 50. Additionally, a first device comprising an organic light emitting device is provided. The organic light emitting device further comprises an anode, a cathode; and an organic layer, disposed between the anode and the cathode. The organic layer comprises a compound comprising a ligand L having Formula I. A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is phenyl. $R_A$ may represent mono, di, tri, or tetra substitutions. Each of $R_A$ is independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. $R_B$ is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. The ligand L is coordinated to a metal M having an atomic number greater than 40. Preferably, M is Ir. Specific, non-limiting examples of devices comprising the compounds are provided. In one aspect, the compound used in the first device is selected from the group consisting of Compound 1-Compound 50. The various specific aspects discussed above for compounds comprising a ligand L having Formula I are also applicable to a compound comprising a ligand L having Formula I that is used in the first device. In particular, specific aspects of $R_A$ , $R_B$ , A, L', M, m, $R_1$ , $R_2$ , $R_3$ , $R_4$ , $R_5$ , $R_6$ , and $R_7$ of the compound comprising a ligand L having Formula I discussed above are also applicable to a compound comprising a ligand L having Formula I that is used in a the first device. In one aspect, the organic layer is an emissive layer and the compound is an emissive dopant. In another aspect, the organic layer further comprises a host. In yet another aspect, 20 the host is a metal 8-hydroxyquinolate. Preferably, the host is: In one aspect, the first device is a consumer product. In another aspect, the first device is an organic light emitting device #### BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an organic light emitting device. FIG. 2 shows an inverted organic light emitting device 40 that does not have a separate electron transport layer. FIG. 3 shows an exemplary compound comprising a 5-substituted 2-phenylquinoline ligand (top) and a preferred embodiment of the 5-substituted 2-phenylquinolone compound (bottom). ### DETAILED DESCRIPTION Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and 50 a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a 55 localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but 60 are generally considered undesirable. The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission 65 generally occurs in a time frame of less than 10 nanoseconds. 6 More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in U.S. Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference. FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in U.S. Pat. No. 7,279,704 at cols. 6-10, which are incorporated by reference. More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m-MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying 45 transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100. The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non-limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in 5 nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, 15 may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole 20 transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, 25 for example, with respect to FIGS. 1 and 2. Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247, 190 to Friend et al., which is incorporated by reference in its organic layer may be used. OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve outcoupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties. Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. 45 Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing 50 (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, now U.S. Pat. No. 7,431,968, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably 55 carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by refer- 60 ence in their entireties, and patterning associated with some of the deposition methods such as ink jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl 65 and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small mol8 ecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing. Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfinders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C., and more preferably at room temperature (20-25 degrees C.). The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures. The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in U.S. Pat. No. 7,279,704 at cols. 31-32, which are incorporated herein by reference. Novel organometallic 2-phenylquinoline Ir complexes are provided. In particular, the compounds comprise an alkyl having at least 2 carbon atoms. It is believed that compounds containing a bulky alkyl at the 5-position on the phenylquinoline is novel. In addition, it is believed that the presence of a bulky alkyl at the 5-position may increase efficiency by preventing self-quenching. Notably, placing the bulky alkyl at the 5-position on the 2-phenylquinoline does not shift the emission wavelength or change the color. Therefore, these compounds may provide improved efficiency and maintain saturated red emission. These compounds may be useful in organic light emitting devices, in particular as red emitters in the emissive layer of such devices. Compounds comprising a 5-substituted 2-phenylquinoline containing ligand are provided. The compounds comprise a ligand L having the formula: Formula I A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is phenyl. R<sub>4</sub> may represent Formula II mono, di, tri, or tetra substitutions. Each of $R_{\scriptscriptstyle A}$ is independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. These compounds may be fully or partially deuterated. $R_{\scriptscriptstyle B}$ is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. The ligand L is coordinated to a metal M having an atomic number greater than 40. Preferably, M is Ir. In one aspect, the compound has the formula: $$R_B$$ $N$ $Ir \leftarrow L']_{3-m}$ . L' is an ancillary ligand. m is 1, 2, or 3. In another aspect, L' is a monoanionic bidentate ligand. In yet another aspect, L' is $$R_1$$ R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub> are independently selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. In one aspect, the compound has the formula: Formula III $$\begin{bmatrix} R_4 & & & & & \\ & & & & \\ & & & & \\ & & & \\ R_7 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$ R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>5</sub>, R<sub>6</sub> and R<sub>7</sub> are independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. $R_4$ is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. m is 1, 2, or 3. Preferably, each of $R_1$ and $R_3$ are a branched alkyl with branching at a position further than the $\alpha$ position to the carbonyl group. Without being bound by theory, it is believed that a branched alkyl substituent at $R_1$ and $R_3$ may provide high device efficiency and stability, and a very narrow emission spectrum. The placement of substituents on the compound having Formula III may improve efficiency while maintaining a desirable spectrum. In particular, it is believed that substitution on the position ortho to the R<sub>5</sub> next to quinoline with a substituent other than hydrogen, as shown in Formula III, may result in broadening the compound's spectrum. In addition, alkyl substitution on quinoline at the 3-position may broaden the emission spectrum. Alkyl substitution at the 4, 6, or 7-position may slightly blue shift the emission spectrum, thereby making the emission less saturated. Therefore, the substitution pattern of the 5-substituted 2-phenylquinoline compounds described herein may provide highly desirable compound and device characteristics. In one aspect, each of $R_5$ , $R_6$ and $R_7$ are independently selected from methyl and hydrogen, and at least one of $R_5$ , $R_6$ and $R_7$ is methyl. In another aspect, each of $R_5$ and $R_7$ are methyl, and $R_6$ is hydrogen. In yet another aspect, each of $R_5$ and $R_6$ are methyl, and $R_7$ is hydrogen. In a further aspect, each of $R_5$ , $R_6$ and $R_7$ are methyl. In one aspect, $R_4$ is an alkyl group having at least 4 carbon atoms. In another aspect, $R_4$ is an alkyl group having at least 3 carbon atoms. Alkyl substitutions may be particularly important because they offer a wide range of tunability in terms of evaporation temperature, solubility, energy levels, device efficiency and narrowness of the emission spectrum. Additionally, alkyl groups can be stable functional groups chemically and in device operation. Specific, non-limiting examples of the 5-substituted 2-phenylquinoline containing compounds are provided. In one aspect, the compound is selected from the group consisting of: Compound 6 -continued Compound 2 5 10 15 -continued Compound 18 10 15 Compound 19 Compound 23 Compound 20 35 Compound 24 50 65 Compound 21 Compound 25 Compound 31 Compound 32 Compound 34 Compound 36 Compound 41 25 Compound 47 Compound 48 Additionally, a first device comprising an organic light emitting device is provided. The organic light emitting device further comprises an anode, a cathode, and an organic layer, disposed between the anode and the cathode. The $^{5}\,\,$ organic layer comprises a compound comprising a ligand L having the formula: Formula I Formula II A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is phenyl. $R_A$ may represent mono, di, tri, or tetra substitutions. Each of $\mathbf{R}_{\mathcal{A}}$ is independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. $R_{\mathcal{B}}$ is selected from the group 30 consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. The ligand L is coordinated to a metal M having an atomic number greater than 40. Preferably, M is Ir. In one aspect, the compound has the formula: Compound 49 40 45 55 60 $$R_B$$ $N$ $Ir \leftarrow L']_{3-m}$ . 50 Compound 50 L' is an ancillary ligand. m is 1, 2, or 3. In one aspect, L' is a monoanionic bidentate ligand. In another aspect, L' is $$R_3$$ $R_2$ $R_1$ 65 R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub> are independently selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. Formula III $$\begin{bmatrix} R_4 & & & \\ & & & \\ & & & \\ & & & \\ R_5 & & & \\ & & & \\ R_6 & & & \\ \end{bmatrix}_{n}$$ $R_1, R_2, R_3, R_5, R_6$ and $R_7$ are independently selected from $^{20}$ the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, arylkyl, aryl and heteroaryl. R<sub>4</sub> is selected from the group consisting of alkyl having at least 2 carbon atoms, amino, alkenyl, alkynyl, arylkyl, and silyl. m is 1, 2, or 3. Specific, non-limiting examples of devices comprising the compounds are provided. In one aspect, the first device comprises a compound selected from the group consisting of Compound 1-Compound 50. In one aspect, the organic layer is an emissive layer and the compound is an emissive dopant. In another aspect, the organic layer further comprises a host. In yet another aspect, the host is a metal 8-hydroxyquinolate. Preferably, the host In one aspect, the first device is a consumer product. In another aspect, the first device is an organic light emitting device. Combination with other Materials The materials described herein as useful for a particular 50 layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, 55 electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other mate- 60 rials that may be useful in combination. HIL/HTL: A hole injecting/transporting material to be used in embodiments of the present invention is not particularly limited, and any compound may be used as long as the 65 compound is typically used as a hole injecting/transporting material. Examples of the material include, but are not 26 limited to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with conductivity dopants; a conducting polymer, such as PEDOT/ PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoO<sub>x</sub>; a p-type semiconducting organic compound, such as 1,4,5,8,9,12-Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds. Examples of aromatic amine derivatives used in the HIL or HTL include, but are not limited to, the following general structures: $$Ar^{2}$$ $Ar^{3}$ $Ar^{2}$ $Ar^{3}$ $Ar^{4}$ $Ar^{4}$ $Ar^{5}$ $Ar^{5}$ $Ar^{5}$ $Ar^{6}$ $Ar^{7}$ $Ar^{7}$ $Ar^{8}$ Each of Ar<sup>1</sup> to Ar<sup>9</sup> is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl. In one aspect, Ar<sup>1</sup> to Ar<sup>9</sup> is independently selected from the group consisting of: k is an integer from 1 to 20; $X^1$ to $X^8$ is CH or N; $Ar^1$ has the same group defined above. Examples of metal complexes used in the HIL or HTL include, but are not limited to, the following general formula: $$\left[ \left( \begin{array}{c} Y^1 \\ Y^2 \end{array} \right)_{g_1} M - Ln \right]$$ M is a metal, having an atomic weight greater than 40; $(Y^1\text{-}Y^2)$ is a bidentate ligand, Y1 and Y² are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the $^{50}$ maximum number of ligands that may be attached to the metal. In one aspect, $(Y^1-Y^2)$ is a 2-phenylpyridine derivative. In another aspect, $(Y^1-Y^2)$ is a carbene ligand. In another aspect, M is selected from Ir, Pt, Os, and Zn. 55 In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc<sup>+</sup>/Fc couple less than about 0.6 V. Host: The light emitting layer of the organic EL device in some 60 embodiments the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds 65 may be used as long as the triplet energy of the host is larger than that of the dopant. Examples of metal complexes used as hosts are preferred to have the following general formula: $$\begin{bmatrix} \begin{pmatrix} Y^1 \\ Y^2 \end{bmatrix}_m M - LI$$ M is a metal; (Y³-Y⁴) is a bidentate ligand, Y³ and Y⁴ are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may 15 be attached to the metal. In one aspect, the metal complexes are: $$\begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{m} Al - L_{3-m} \begin{bmatrix} \bigcirc \\ N \end{bmatrix}_{m} Zn - L_{2-m}$$ O—N) is a bidentate ligand, having metal coordinated to atoms O and N. In another aspect, M is selected from Ir and Pt. In a further aspect, $(Y^3-Y^4)$ is a carbene ligand. Examples of organic compounds used as hosts are selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Wherein each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl. In one aspect, the host compound contains at least one of the following groups in the molecule: $$\bigcap_{N \in \mathbb{R}^{2}}^{\mathbb{R}^{1}}$$ $$X^{2}$$ $$X^{3}$$ $$X^{4}$$ $$X^{5} = X^{6}$$ $$X^{1}$$ $$X^{2}$$ $$X^{5} = X^{6}$$ $$X^{1}$$ $$X^{5} = X^{6}$$ $$X^{5} = X^{6}$$ $$X^{2}$$ $$X^{3}$$ $$X^{4}$$ $$X^{5} = X^{6}$$ $$X^{7}$$ $$\mathbb{R}^{1}$$ -continued $$\begin{array}{c|c} R^1 & R^5 \\ R^2 - Si & R^4 - Si \\ R^3 & R^6 \end{array}$$ R¹ to R³ is independently selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. k is an integer from 0 to 20. X<sup>1</sup> to X<sup>8</sup> is selected from CH or N. HBL: 40 45 50 55 60 65 A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED. In one aspect, the compound used in the HBL contains the same molecule used as host described above. In another aspect, the compound used in the HBL contains at least one of the following groups in the molecule: $$\begin{bmatrix} \bigcirc \\ N \end{bmatrix}_m Al - L_{3-1}$$ k is an integer from 0 to 20; L is an ancillary ligand, m is an integer from 1 to 3. 25 ETL: Electron transport layer (ETL) may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity. Examples of the ETL material are 5 not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons. In one aspect, the compound used in the ETL contains at least one of the following groups in the molecule: R<sup>1</sup> is selected from the group consisting of hydrogen, deuterium, alkyl, alkoxy, amino, alkenyl, alkynyl, arylalkyl, heteroalkyl, aryl and heteroaryl, when it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above. Ar<sup>1</sup> to Ar<sup>3</sup> has the similar definition as Ar's mentioned above. k is an integer from 0 to 20. X<sup>1</sup> to X<sup>8</sup> is selected from CH or N. In another aspect, the metal complexes used in the ETL contain, but are not limited to, the following general formula: $$\begin{bmatrix} O \\ N \end{bmatrix}_{m} Al - L_{3-m} \qquad \begin{bmatrix} O \\ N \end{bmatrix}_{m} Be - L_{2-m} \\ \begin{bmatrix} O \\ N \end{bmatrix}_{m} Zn - L_{2-m} \end{bmatrix}$$ (O—N) or (N—N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L is an ancillary ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal. In any above-mentioned compounds used in each layer of OLED device, the hydrogen atoms can be partially or fully deuterated. In addition to and/or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 1 below. Table 1 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials. TABLE 1 | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---------------------------------------|---------------------------------------|-----------------------------------------| | | Hole injection materials | | | Phthalocyanine and pophryin compounds | N N N N N N N N N N N N N N N N N N N | Appl. Phys.<br>Lett. 69,<br>2160 (1996) | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------|----------------------|--------------------------------| | Starburst triarylamines | | J. Lumin. 72-74,<br>985 (1997) | CF<sub>x</sub> Fluorohydrocarbon polymer -[-CH<sub>x</sub>F<sub>y</sub>-]<sub>n</sub> Appl. Phys. Lett. 78, 673 (2001) Conducting polymers (e.g., PEDOT:PSS, polyaniline, polypthiophene) $$SO_3(H^+)$$ Synth. Met. 87, 171 (1997) WO2007002683 Phosphonic acid and sliane SAMs $$N \longrightarrow SiCl_3$$ US20030162053 | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | Triarylamine or<br>polythiophene<br>polymers with<br>conductivity dopants | | EA01725079A1 | | | Br<br>N—+N | | | | $F \longrightarrow F \longrightarrow$ | | Arylamines complexed with metal oxides such as molybdenum and tungsten oxides $$+ MoO_x$$ SID Symposium Digest, 37, 923 (2006) WO2009018009 TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |------------------------------------------|--------------------------------|----------------------------------------| | Semiconducting<br>organic<br>complexes | NC CN N N N N N N CN CN | US20020158242 | | Metal<br>organometallic<br>complexes | Ir | US20060240279 | | Cross-linkable compounds | | US20080220265 | | | Hole transporting materials | | | Triarylamines (e.g., TPD, $\alpha$ -NPD) | | Appl. Phys.<br>Lett. 51,<br>913 (1987) | | | | U.S. Pat. No. 5,061,569 | MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS EP650955 J. Mater. Chem. 3, 319 (1993) Appl. Phys. Lett. 90, 183503 (2007) | | TABLE 1-continued | | |------------------------------------------------------------|-------------------------|---------------------------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | Appl. Phys. Lett. 90, 183503 (2007) | | Triaylamine on spirofluorene core | $Ph_2N$ $NPh_2$ $NPh_2$ | Synth. Met.<br>91, 209<br>(1997) | | Arylamine carbazole compounds | | Adv. Mater.<br>6, 677<br>(1994),<br>US20080124572 | | Triarylamine with<br>(di)benzothiophene/<br>(di)benzofuran | | US20070278938,<br>US20080106190 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------|-----------------------------------------------|-----------------------------------------| | Indolocarbazoles | | Synth. Met.<br>111, 421<br>(2000) | | | | | | Isoindole compounds | | Chem. Mater.<br>15, 3148<br>(2003) | | | N N N N N N N N N N N N N N N N N N N | | | Metal carbene complexes | Ir | US20080018221 | | | Phosphorescent OLED host materials Red hosts | | | Arylcarbazoles | | Appl. Phys.<br>Lett. 78,<br>1622 (2001) | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------| | Metal 8-<br>hydroxyquinolates<br>(e.g., Alq <sub>3</sub> , BAlq) | $\begin{bmatrix} \\ \\ \\ \end{bmatrix}_{0} \end{bmatrix}_{3} Al$ | Nature 395,<br>151 (1998) | | | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}_{0} \end{bmatrix}_{2} A I - O - \begin{bmatrix} \\ \\ \\ \end{bmatrix}_{2}$ | US20060202194 | | | Al—O | WO2005014551 | | | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ \end{bmatrix}$ $\begin{bmatrix} \\ \\ \\ \end{bmatrix}$ $\begin{bmatrix} $ | WO2006072002 | | Metal<br>phenoxy-<br>benzothiazole<br>compounds | S N Zn | Appl. Phys.<br>Lett. 90,<br>123509 (2007) | | Conjugated<br>oligomers and<br>polymers<br>(e.g., polyfluorene) | $C_8H_{17}$ $C_8H_{17}$ | Org. Electron.<br>1, 15<br>(2000) | | Aromatic fused rings | | WO2009066779,<br>WO2009066778,<br>WO2009063833,<br>US20090045731,<br>US20090045730,<br>WO2009008311,<br>US20090008605,<br>US20090009065 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------------------------|-----------------------|-----------------------------------------| | Zinc complexes | H Zn N H Green hosts | WO2009062578 | | Arylcarbazoles | | Appl. Phys.<br>Lett. 78,<br>1622 (2001) | | | | US20030175553 | | | | WO2001039234 | | Aryltriphenylene compounds | | US20060280965 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------|----------------------|-----------------------------------------| | | | US20060280965 | | | | WO2009021126 | | Donor acceptor type molecules | | WO2008056746 | | Aza-carbazole/<br>DBT/DBF | | JP2008074939 | | Polymers<br>(e.g., PVK) | | Appl. Phys.<br>Lett. 77,<br>2280 (2000) | | | TABLE 1-continued | | |------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | Spirofluorene<br>compounds | | WO2004093207 | | Metal<br>phenoxy-<br>benzooxazole<br>compounds | $\begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$ $\begin{bmatrix} \end{bmatrix}$ $\begin{bmatrix} \\ \\ \\ \end{bmatrix}$ $\begin{bmatrix} $ | WO2005089025 | | | N Al-O N | WO2006132173 | | | O Zn Zn | JP200511610 | | Spirofluorene-<br>carbazole<br>compounds | | JP2007254297 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------------------------------------------------------------------------|----------------------|--------------------------------------| | | | JP2007254297 | | Indolocabazoles | | WO2007063796 | | | | WO2007063754 | | 5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole) | N-N<br>N | J. Appl. Phys.<br>90, 5048<br>(2001) | | | | WO2004107822 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-----------------------------------------------------------------------|----------------------|-----------------------------------------| | Tetraphenylene<br>complexes | | US20050112407 | | Metal<br>phenoxypyridine<br>compounds | Zn Zn | WO2005030900 | | Metal coordination<br>complexes<br>(e.g., Zn, Al<br>with N N ligands) | N<br>N<br>N<br>Zn | US20040137268,<br>US20040137267 | | | Blue hosts | | | Arylcarbazoles | | Appl. Phys.<br>Lett, 82,<br>2422 (2003) | | | | US20070190359 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--------------------------------------------------------------|---------------------------------------|---------------------------------| | Dibenzothiophene/<br>Dibenzofuran-<br>carbazole<br>compounds | | WO2006114966,<br>US20090167162 | | | S S S S S S S S S S S S S S S S S S S | US20090167162 | | | | WO2009086028 | | | S | US20090030202,<br>US20090017330 | | Silicon aryl compounds | | US20050238919 | | | | WO2009003898 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---------------------------------------------|-------------------------------------|----------------------------------------| | Silicon/<br>Germanium aryl<br>compounds | Sin | EP2034538A | | Aryl benzoyl ester | | WO2006100298 | | High triplet metal organometallic complex | Ir 3 | U.S. Pat. No. 7,154,114 | | | Phosphorescent dopants Red dopants | | | Heavy metal porphyrins (e.g., PtOEP) | Et Et Et Et Et Et Et | Nature 395,<br>151 (1998) | | Iridium(III)<br>organometallie<br>complexes | In O | Appl. Phys.<br>Lett. 78,<br>1622(2001) | MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS US2006835469 US2006835469 US20060202194 US20060202194 US20070087321 MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS US20070087321 Adv. Mater. 19, 739 (2007) WO2009100991 Ir(acac) WO2008101842 Platinum(II) organometallic complexes WO2003040257 TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------------------------------------------|-----------------------------------------------------|------------------------------------| | Osminum(III) complexes | $F_3C$ $N$ $N$ $Os(PPhMe_2)_2$ | Chem. Mater.<br>17, 3532<br>(2005) | | Ruthenium(II) complexes | N<br>N<br>N<br>Ru(PPhMe <sub>2</sub> ) <sub>2</sub> | Adv. Mater.<br>17, 1059<br>(2005) | | Rhenium (I),<br>(II), and (III)<br>complexes | Re—(CO) <sub>4</sub> | US20050244673 | | | Green dopants | | | Iridium(III) organometallic complexes | and its derivatives | Inorg. Chem.<br>40, 1704<br>(2001) | | | | US20020034656 | | TABLE 1-continued | | | |-------------------|----------------------|----------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | U.S. Pat. No. 7,332,232 | | | | US20090108737 | | | Ir 3 | US20090039776 | | | S Ir | U.S. Pat. No.<br>6,921,915 | | TABLE 1-continued | | | |-------------------|----------------------|------------------------------------| | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | | | | U.S. Pat. No.<br>6,687,266 | | | Ir | Chem. Mater.<br>16, 2480<br>(2004) | | | Ir | US20070190359 | | | Ir | US20060008670<br>JP2007123392 | | | Ir O | Adv. Mater.<br>16, 2003<br>(2004) | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |------------------------------------------------------|----------------------|-----------------------------------------------------------| | | Ir<br>N | Angew. Chem.<br>Int. Ed.<br>2006, 45, 7800 | | | Ir No. S | WO2009050290 | | | S Ir | US20090165846 | | | | US20080015355 | | Monomer for polymeric metal organometallic compounds | | U.S. Pat. No.<br>7,250,226,<br>U.S. Pat. No.<br>7,396,598 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-----------------------------------------------------------------------|------------------------------|-------------------------------------------| | Pt(II) organometallic<br>complexes, including<br>polydentated ligands | Pt—Cl | Appl. Phys.<br>Lett. 86,<br>153505 (2005) | | | Pt—O | Appl. Phys.<br>Lett. 86,<br>153505 (2005) | | | $rac{1}{\sqrt{\frac{1}{N}}}$ | Chem. Lett. 34, 592 (2005) | | | N O Pt | WO2002015645 | | | Ph Ph | US20060263635 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------------|-----------------------------------------------|------------------------------------| | Cu complexes | De Cui Ne | WO2009000673 | | Gold complexes | N—Au—N—N | Chem. Commun.<br>2906 (2005) | | Rhenium(III) complexes | F <sub>3</sub> C OC Re CO | Inorg. Chem.<br>42, 1248<br>(2003) | | Deuterated organometallic complexes | D D D Ir | US20030138657 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |---------------------------------------------------------|-----------------------------------------|----------------------------| | Organometallic complexes with two or more metal centers | | US20030152802 | | | F S S S S S S S S S S S S S S S S S S S | U.S. Pat. No.<br>7,090,928 | | | Blue dopants | | | Iridium(III)<br>organometallic<br>complexes | F Ir O | WO2002002714 | | | Ir | WO2006009024 | | | Ir N | US20060251923 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------| | | Ir 3 | U.S. Pat. No. 7,393,599, WO2006056418, US20050260441, WO2005019373 | | | Ir O | U.S. Pat. No.<br>7,534,505 | | | Ir <sup>+</sup> | U.S. Pat. No. 7,445,855 | | | $[ \begin{picture}(20,5) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){1$ | US20070190359,<br>US20080297033 | | | Ir January 1 and | U.S. Pat. No. 7,338,722 | | | Ir N Ir | US20020134984 | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |----------|-----------------------------------------------------------|------------------------------------------| | | N N N N N N N N N N N N N N N N N N N | Angew. Chem.<br>Int. Ed.<br>47, 1 (2008) | | | | Chem. Mater.<br>18, 5119<br>(2006) | | | F Ir | Inorg. Chem.<br>46, 4308<br>(2007) | | | Ir N | WO2005123873 | | | Ir | WO2005123873 | | | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}_3$ Ir | WO2007004380 | MATERIAL EXAMPLES OF MATERIAL PUBLICATIONS WO2006082742 Osmium(II) complexes U.S. Pat. No. 7,279,704 Organometallics 23, 3745 (2004) Os(PPh<sub>3</sub>) Appl. Phys. Lett. 74, 1361 (1999) Gold complexes WO2006098120, WO2006103874 Platinum(II) complexes TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------| | | Exciton/hole blocking layer materials | | | Bathocuprine compounds (e.g., BCP, BPhen) | | Appl. Phys.<br>Lett. 75, 4<br>(1999) | | | | Appl. Phys.<br>Lett. 79,<br>449 (2001) | | Metal 8-<br>hydroxyquinolates<br>(e.g., BAlq) | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ $Al-O$ | Appl. Phys.<br>Lett. 81,<br>162 (2002) | | 5-member ring electron deficient heterocycles such as triazole, oxadiazole, imidazole, benzoimidazole | | Appl. Phys.<br>Lett. 81,<br>162 (2002) | | Triphenylene compounds | | US20050025993 | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--------------------------------|----------------------|------------------------------------------------------| | Fluorinated aromatic compounds | F F | F Appl. Phys. Lett. 79, 156 (2001) F F F F F F | Phenothiazine-S-oxide WO2008132085 Electron transporting materials Anthracenebenzoimidazole compounds WO2003060956 | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------| | | | US20090179554 | | Aza triphenylene<br>derivatives | | US20090115316 | | Anthracene-<br>benzothiazole<br>compounds | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Appl. Phys.<br>Lett. 89,<br>063504 (2006) | | Metal 8-<br>hydroxyquinolates<br>(e.g., Alq <sub>3</sub> , Zrq <sub>4</sub> ) | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ $O$ $3$ | Appl. Phys.<br>Lett. 51,<br>913 (1987)<br>U.S. Pat. No.<br>7,230,107 | | Metal<br>hydroxy-<br>benoquinolates | $\begin{bmatrix} \\ \\ \\ \\ \end{bmatrix}$ Be | Chem. Lett.<br>5, 905<br>(1993) | | Bathocuprine<br>compounds<br>such as BCP,<br>BPhen, etc | | Appl. Phys.<br>Lett. 91,<br>263503 (2007) | TABLE 1-continued | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |-------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------| | | | Appl. Phys.<br>Lett. 79,<br>449 (2001) | | 5-member ring electron deficient heterocycles (e.g., triazole, oxadiazole, imidazole, benzoimidazole) | | Appl. Phys.<br>Lett. 74,<br>865 (1999) | | | N-N<br>O | Appl. Phys.<br>Lett. 55,<br>1489 (1989) | | | N-N<br>N | Jpn. J. Apply.<br>Phys.<br>32, L917 (1993) | | Silole compounds | N N N N N N N N N N N N N N N N N N N | Org. Electron.<br>4, 113<br>(2003) | | Arylborane compounds | B B B | J. Am. Chem.<br>Soc. 120,<br>9714 (1998) | | MATERIAL | EXAMPLES OF MATERIAL | PUBLICATIONS | |--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------| | Fluorinated aromatic compounds | $F \longrightarrow F \longrightarrow$ | J. Am. Chem.<br>Soc. 122,<br>1832 (2000) | | Fullerene (e.g., C60) | | US20090101870 | | Triazine complexes | $F \longrightarrow F \qquad $ | US20040036077 | | Zn (N N) complexes | N Zn SO <sub>2</sub> | U.S. Pat. No.<br>6,528,187 | ## **EXPERIMENTAL** ## Compound Examples #### Example 1 #### Synthesis of Compound 1 Synthesis of (2-amino-6-chlorophenyl)methanol. 2-Amino-6-chlorobenzoic acid (25.0 g, 143 mmol) was dissolved in 120 mL of anhydrous THF in a 500 mL 2 neck round bottom flask. The solution was cooled in an ice-water bath. 215 mL of 1.0 M lithium aluminum hydride (LAH) THF solution was then added dropwise. After all of the LAH was added, the reaction mixture was allowed to warm up to room temperature and then stirred at room temperature overnight. ~10 mL of water was added to the reaction mixture followed by 7 g 15% NaOH. An additional 20 g of water was added to the reaction mixture. The organic THF phase was decanted and ~200 mL of ethyl acetate was added to the solid with stirring. Na<sub>2</sub>SO<sub>4</sub> was added as a drying agent to the combined ethyl acetate organic portion and THF portion. The mixture was filtered and evaporated. ~20 g yellow solid was obtained and taken on to the next step without further purification. Synthesis of 5-chloro-2-(3,5-dimethylphenyl)quinoline. (2-Amino-6-chlorophenyl)methanol (16 g, 102 mmol), 3,5-dimethylacetophenone (22.6 g, 152 mmol), RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> (0.973 g, 1.015 mmol), and KOH (10.25 g, 183 mmol) were <sup>30</sup> refluxed in 270 mL of toluene for 18 h. Water was collected from the reaction using a Dean-stark trap. The reaction mixture was allowed to cool to room temperature, filtered through a silica gel plug and eluted with 5% ethyl acetate in hexanes. The product was further purified by Kugelrohr distillation to give 23.5 g of crude product, which was crystallized from 60 mL of MeOH to give 8.6 g (32% yield) 40 of the desired product. Synthesis of 2-(3,5-dimethylphenyl)-5-isobutylquinoline. 5-Chloro-2-(3,5-dimethylphenyl)quinoline (4.3 g, 16.06 mmol), isobutylboronic acid (3.2 g, 31.4 mmol), dicyclohexyl(2',6'-dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (0.538 g, 1.31 mmol), and potassium phosphate monohydrate (18.3 g, 79 mmol) were mixed in 114 mL of toluene. The system was degassed for 20 minutes. $Pd_2(dba)_3$ was then added and the system was refluxed overnight. After cooling to room temperature, the reaction mixture was filtered through a Celite® plug and eluted with dichloromethane. The product was further purified by a Kugelrohr distillation and then further purified by column chromatography using 5% ethyl acetate in hexanes. This was followed by another Kugelrohr distillation to give 3.2 g (72% yield) of product. Synthesis of Iridium dimer. A mixture of 2-(3,5-dimethylphenyl)-5-isobutylquinoline (3.2 g, 11.06 mmol), IrCl<sub>3</sub>.4H<sub>2</sub>O (1.79 g, 4.83 mmol), 2-ethoxyethanol (45 mL) and water (105 mL) was refluxed under nitrogen overnight. The reaction mixture was filtered and washed with MeOH (3×10 mL). ~2.9 g of dimer was obtained after vacuum drying. The dimer was used for the next step without further purification. a nitrogen glove box (<1 ppm of H<sub>2</sub>O and O<sub>2</sub>) immediately after fabrication, and a moisture getter was incorporated inside the package. The stack of the device examples consisted of sequentially, from the 1200 Å ITO surface, 100 Å of Compound A as the hole injection layer (HIL), 400 Å of 4,4'-bis[N-(1 naphthyl)-N-phenylamino|biphenyl (α-NPD) as the hole transporting layer (HTL), 300 Å of the 7 wt % invention 60 Synthesis of Compound 1. Dimer (2.9 g, 1.80 mmol), pentane-2,4-dione (1.80 g, 18.02 mmol), K<sub>2</sub>CO<sub>3</sub> (2.49 g, 50 18.02 mmol) and 2-ethoxyethanol (22 mL) were stirred at room temperature for 24 h. The precipitate was filtered and washed with methanol. The solid was further purified by passing it through a silica gel plug (that was pretreated with 15% triethylamine (TEA) in hexanes and eluted with meth- 55 ylene chloride. 2-Propanol was added to the filtrate. The filtrate was concentrated, but not to dryness. 1.6 g of product was obtained after filtration. The solid was sublimed twice under high vacuum at 240° C. to give 1.0 g (64%) of Compound 1. ### Device Examples All example devices were fabricated by high vacuum Torr) thermal evaporation. The anode electrode is 1200 Å of indium tin oxide (ITO). The cathode consisted of 65 10 Å of LiF followed by 1000 Å of Al. All devices are encapsulated with a glass lid sealed with an epoxy resin in compound doped into BAlq host as the emissive layer (EML), 550 Å of Alq<sub>3</sub> (tris-8-hydroxyquinoline aluminum) as the ETL. Comparative Examples were fabricated similarly to the Device Examples except that Compound B, C or D was used as the emitter in the EML. As used herein, the following compounds have the following structures: Compound A -continued Compound C Compound D 30 Particular emissive dopants for the emissive layer of an OLED are provided. These compounds may lead to devices 45 having particularly good properties. The device structures and device data are summarized in Table 2. As seen from the Table 2, the EQE of Compound 1 at 1000 nits is up to 10% higher than Compounds B, C, and D. Additionally, the EL spectral full width at half maximum (FWHW) of Compound 1 (58 nm) is also narrower than 5 Compound B (62 nm) and Compound D (64 nm), which is a desirable device property. The FWHM of Compound 1 is the same as the FWHM of Compound C (58 nm). The color saturation (CIE) of Compound 1 and Compound B are also the same. These results indicate that Compound 1 is a more efficient red emitter than Compounds B, C and D with a desirable narrower FWHM. Compound 1 also has almost a double lifetime at room temperature compared to Compound D. The only difference between these two compounds is that Compound 1 has a bulkier group at 5-position. This clearly indicates that a bulkier group than methyl in the 5-position of 2-phenylquinoline may indeed provide a significant improvement in overall device performance. It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore include variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting. The invention claimed is: 1. A compound having a structure of Formula II: Formula II $$R_B$$ $N$ $Ir + L']_{3-m}$ wherein m is 1 or 2; TABLE 2 | TABLE Z | | | | | | | | | | | | | |----------------------------------------|-------|-------|-----------------|---------------|-------|--------|------|--------------------------|----------|------------------|-----|---------| | | | | | At 1,000 nits | | | | At 40 mA/cm <sup>2</sup> | | | | | | | 1931 | CIE | $\lambda_{max}$ | FWHM | | LE | EQE | PE | cd/A per | L <sub>o</sub> . | LT; | 80% [h] | | Emitter | x | у | [nm] | [nm] | V [V] | [cd/A] | [%] | [lm/W] | EQE | [nits] | RT | 70° C. | | Compound 1<br>(Device<br>Example) | 0.666 | 0.331 | 622 | 58 | 7.8 | 22.2 | 20.5 | 9.0 | 1.08 | 6,852 | 600 | 66 | | Compound B (Comparative Example) | 0.667 | 0.331 | 622 | 62 | 8.1 | 19.9 | 18.8 | 7.7 | 1.06 | 6,447 | 878 | 70 | | Compound C (Comparative Example) | 0.662 | 0.335 | 620 | 58 | 7.4 | 21.9 | 18.9 | 9.3 | 1.16 | 6,927 | 565 | 73 | | Compound D<br>(Comparative<br>Example) | 0.664 | 0.334 | 620 | 64 | 8.1 | 21.1 | 19.4 | 8.1 | 1.09 | 6,666 | 321 | 44 | 10 101 wherein L' is $$R_3$$ $R_2$ ; wherein A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; wherein $R_A$ may represent mono, di, tri, or tetra substitutions: wherein each of R<sub>4</sub>, R<sub>1</sub>, R<sub>2</sub>, and R<sub>3</sub> is independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, aryl and heteroaryl; and wherein $R_B$ is selected from the group consisting of amino, alkenyl, alkynyl, and aralkyl. 2. The compound of claim 1, wherein A is phenyl. 3. The compound of claim 1, wherein the compound has the formula: Formula III 25 35 $$\begin{bmatrix} R_4 & & & \\ & & & \\ & & & \\ R_5 & & & \\ & & & \\ R_6 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$ wherein $R_1$ , $R_2$ , $R_3$ , $R_5$ , $R_6$ and $R_7$ are independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, 45 aralkyl, aryl and heteroaryl; and wherein R<sub>4</sub> is selected from the group consisting of amino, alkenyl, alkynyl, and aralkyl. **4.** The compound of claim **3**, wherein each of $R_1$ and $R_3$ is a branched alkyl with branching at a position further than 50 the $\alpha$ position to the carbonyl group. **5**. The compound of claim **3**, wherein each of $R_5$ , $R_6$ and $R_7$ is independently selected from methyl and hydrogen, and at least one of $R_5$ , $R_6$ and $R_7$ is methyl. **6.** The compound of claim **3**, wherein each of $R_5$ and $R_7$ 55 is methyl, and $R_6$ is hydrogen. 7. The compound of claim 3, wherein each of $R_5$ and $R_6$ is methyl, and $R_7$ is hydrogen. **8**. The compound of claim **3**, wherein each of $R_5$ , $R_6$ and $R_7$ is methyl. 9. A first device comprising an organic light emitting device, comprising: an anode; a cathode; and an organic layer, disposed between the anode and the 65 cathode, comprising a compound having a structure of Formula II: 102 $$R_B$$ $N$ $Ir + L']_{3-m}$ wherein m is 1 or 2; wherein L' is $$R_3$$ wherein A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; wherein $R_A$ may represent mono, di, tri, or tetra substitutions; wherein each of $R_A$ , $R_1$ , $R_2$ , and $R_3$ is independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, aryl and heteroaryl; and wherein $R_B$ is selected from the group consisting of amino, alkenyl, alkynyl, and aralkyl. 10. The first device of claim 9, wherein A is phenyl. 11. The first device of claim 9, wherein the compound has the formula: Formula III Formula II $$\begin{bmatrix} R_4 & & & \\ & & & \\ & & & \\ & & & \\ R_5 & & & \\ & & & \\ R_6 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$ wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>5</sub>, R<sub>6</sub> and R<sub>7</sub> are independently selected from the group consisting of hydrogen, deuterium, alkyl, silyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, aryl and heteroaryl; and wherein R<sub>4</sub> is selected from the group consisting of amino, alkenyl, alkynyl, and aralkyl. 12. The first device of claim 9, wherein the organic layer is an emissive layer and the compound is an emissive dopant. 103 104 13. The first device of claim 12, wherein the organic layer further comprises a host. 14. The first device of claim 13, wherein the host is a metal 8-hydroxyquinolate. 15. The first device of claim 14, wherein the host is: 15 20 16. The first device of claim 9, wherein the first device is a consumer product. 17. The first device of claim 9, wherein the first device is an organic light emitting device. | 专利名称(译) | 有机电致发光材料和器件 | | | | | | | | |----------------|----------------------------------------------------------------------------------------------------------------------------|---------|------------|--|--|--|--|--| | 公开(公告)号 | <u>US9853227</u> | 公开(公告)日 | 2017-12-26 | | | | | | | 申请号 | US13/872840 | 申请日 | 2013-04-29 | | | | | | | [标]申请(专利权)人(译) | 马斌<br>迪安吉利斯ALAN<br>夏传军<br>ADAMOVICH VADIM | | | | | | | | | 申请(专利权)人(译) | MA,BIN<br>迪安吉利斯,ALAN<br>夏,川军<br>ADAMOVICH,VADIM | | | | | | | | | 当前申请(专利权)人(译) | 通用显示器公司 | | | | | | | | | [标]发明人 | MA BIN DEANGELIS ALAN XIA CHUANJUN ADAMOVICH VADIM | | | | | | | | | 发明人 | MA, BIN DEANGELIS, ALAN XIA, CHUANJUN ADAMOVICH, VADIM | | | | | | | | | IPC分类号 | H01L51/54 H01L51/00 C09K11/06 C07F15/00 H01L51/50 | | | | | | | | | CPC分类号 | H01L51/0085 C07F15/0033 C09K11/06 H01L51/5016 C09K2211/1029 C09K2211/185 C07C49/92 C07F15/00 C07F19/00 H01L51/50 H05B33/14 | | | | | | | | | 代理机构(译) | DUANE MORRIS LLP | | | | | | | | | 优先权 | 60/905758 2007-03-08 US | | | | | | | | | 其他公开文献 | US20140103305A1 | | | | | | | | | 外部链接 | Espacenet USPTO | | | | | | | | | I+ (NE) | | | | | | | | | ## 摘要(译) 提供的化合物包含具有5-取代的2-苯基喹啉的配体。特别地,2-苯基喹啉可以在5-位被大体积烷基取代。这些化合物可用于有机发光器件中,特别是用作这种器件的发光层中的红色发光体,以提供具有改进性能的器件。 $$\begin{bmatrix} R_4 \\ N \\ N \\ R_5 \end{bmatrix}_{m} \begin{bmatrix} O = \begin{pmatrix} R_3 \\ R_2 \\ R_1 \end{bmatrix}_{3-m}$$